By Alexander N. Papusha

Introducing a brand new useful process in the box of utilized mechanics built to resolve beam power and bending difficulties utilizing classical beam idea and beam modeling, this impressive new quantity bargains the engineer, scientist, or pupil a innovative new method of subsea pipeline layout. Integrating use of the Mathematica application into those types and designs, the engineer can make the most of this new angle to construct improved, extra effective and not more expensive subsea pipelines, an important part of the world's power infrastructure.

Significant advances were completed in implementation of the utilized beam conception in a number of engineering layout applied sciences over the past few many years, and the implementation of this conception additionally takes a massive position in the useful sector of re-qualification and reassessment for onshore and offshore pipeline engineering. A basic technique of utilising beam concept into the layout approach of subsea pipelines has been constructed and already integrated into the ISO guidance for reliability-based restrict country layout of pipelines. This paintings is based on those major advances.

The goal of the ebook is to supply the speculation, learn, and functional purposes that may be used for tutorial reasons by means of group of workers operating in offshore pipeline integrity and engineering scholars. essential for the veteran engineer and scholar alike, this quantity is a crucial new development within the power undefined, a robust hyperlink within the chain of the world's strength production.

Show description

Read or Download Beam Theory for Subsea Pipelines: Analysis and Practical Applications PDF

Best machinery books

Lifts, elevators, escalators and moving walkways/travelators

"Lifts, Elevators and relocating Walkways/Travelators" covers standards, analyses and designs of varied forms of lifts (elevators), escalators and travelators (moving walkways). It contains of 4 sections beginning with a normal creation to forms of lifts, escalators and travelators. part II offers with the making plans, research and layout of parts or components of lifts/elevators.

Machining and machine-tools: Research and development

This booklet is the 3rd within the Woodhead Publishing reports: Mechanical Engineering sequence, and contains prime quality articles (full study articles, evaluate articles and case reports) with a distinct emphasis on examine and improvement in machining and machine-tools. Machining and computing device instruments is a vital topic with program in different industries.

Mechanisms of flat weaving technology

To create an efficient woven textile a technique engineer needs to decide on the best kind of weaving desktop and make certain the actual parameters of the elastic approach of material formation to be utilized. it's also necessary to recognize the aim of the entire mechanisms of the selected form of weaving computing device.

Extra info for Beam Theory for Subsea Pipelines: Analysis and Practical Applications

Sample text

2), describing the deflection of a uniform, static beam, is widely used in engineering practice. Tabulated expressions for the deflection for common beam configurations can be found in engineering handbooks. For more complicated situations the deflection can be determined by solving the Euler – Bernoulli equation using techniques such as: “slope deflection method”, “moment distribution method”, “moment area method”, “conjugate beam method”, “the principle of virtual work”, “direct integration”, “Castigliano’s method”, “Macaulay’s method” or the “direct stiffness method” presented earlier in the Internet.

Euler and J. Bernoulli allowed us to find general solutions for the indeterminate beam described in the part II. A few examples of the indeterminate beams are discussed in details using a classical method of solutions. General classical method leads us to the solutions of the referring problems presented here. 2 Beam in classical evaluations In order to compare two alternative approaches: namely “by hand” and “by computational symbolic evaluation” firstly let us consider the classic method for solving the beam’s problem.

1) N Mi = 0. i=1 Then let us formulate ODE boundary problem to be solved through unknown reactions as the following. d2 y = M(x); dx2 y(0) = 0; y(L) = 0. 2) The boundary conditions below will be used later for finding the reactions of constrains. y (0) = 0; y (L) = 0. 3) Beam in Classical Evaluations 15 Finally, components of the system of equations for finding the unknown reactions ties. 5)). 4) i=1 y (0) = 0; y (L) = 0. We have four equations to find four unknown reactions. 2 The equations of beam equilibrium Application of general method described in the previous section to the beam (Fig.

Download PDF sample

Rated 4.93 of 5 – based on 8 votes